CS/B.TECH/(ECE-New)/SEM-7/EC-702/2013-14

2013

MICROELECTRONICS \& VLSI DESIGN

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Question)

1. Choose the correct alternatives for any ten of the following:

$$
10 \times 1=10
$$

i) Noise margin for low voltage is defined as
a) $\quad N M_{L}=V_{I L}-V_{O L}$
b) $\quad N M_{L}=V_{I L}-V_{I H}$
c) $\quad N M_{L}=V_{O H}-V_{O L}$
d) $\quad N M_{L}=V_{I H}-V_{I L}$
ii) In the VTC curve of an inverter, critical voltages are obtained where the shape of the curve ($d V_{\text {out }} / d V_{\text {in }}$) is
a) 1
b) -1
c) 0
d) none of these.
iii) Slant in $\left(I_{D}-V_{D S}\right)$ occurs due to
a) body effect
b) velocity saturation
c) channel length modulation
d) mobility degradation
iv) The unit of $\mu_{n} C_{O X}$ is
a) A / V^{2}
b) $\quad V^{-1}$
c) ohm
d) $(o h m)^{-1}$
v) The model parameter LAMDA in MOS structure stands for
a) flicker noise
b) transit time
c) channel length modulation
d) transconductance
vi) For an n-channel MOSFET $I_{D(S A T)}=0.2 \mathrm{~mA}, V_{D S}=5 \mathrm{~V}$ and $V_{t h}=0.6 \mathrm{~V}$, the Gate voltage is
a) 4.8 V
b) $\quad 5.6 \mathrm{~V}$
c) 4.4 V
d) 5 V .
vii) The equivalent (W / L) of two nMOS transistors with $\left(W_{1} / \mathrm{L}\right)$ and (W_{2} / L) connected in parallel is
a) $\quad\left(W_{1} / \mathrm{L}\right)+\left(W_{2} / \mathrm{L}\right)$
b) $\quad\left(W_{1} / \mathrm{L}\right) \times\left(W_{2} / \mathrm{L}\right)$
c) $\quad\left(W_{1} / \mathrm{L}\right) /\left(W_{2} / \mathrm{L}\right)$
d) none of these.
viii) How many transistors are required to design function $\mathrm{F}=(\mathrm{A} \cdot \mathrm{B}+\mathrm{C} \cdot \mathrm{D}) ?$
a) 4
b) 6
c) 8
d) $\quad 10$.
ix) The main advantage of precharge-evaluate dynamic logic is
a) lesser number of transistor required
b) high speed
c) low power consumption
d) all of these.
$\mathrm{x} \quad$ Which design is more efficient?
a) Pull-up \& pull-down design
b) TG design
c) Pre-charge \& Evaluate logic
xi) Dynamic logic requires periodic clock signals in order to
a) improve performance
b) synchronization
c) increasing
d) charge refreshing.
xii) The threshold voltage of an enhancement transistor is
a) greater than 0 V
b) less than 0 V
c) equal to 0 V
d) none of these.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following.
2. Describe photolithography process.
3. What is the problem of realizing a large value resistor by a MOSFET structure? How can a switched capacitor be used to overcome this problem?
4. What are the advantages of TG logic design style? Explain with neat sketch the construction and operation of an XOR gate using TG design style.
5. How can resistance of a current source/sink be improved?
6. Explain the operation of clocked CMOS S-R latch circuit.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.
7. a) Classify the different types of ASIC design.
b) Design the following circuit using PAL, PLA and PROM:

$$
\mathrm{Y} 1=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}, \mathrm{Y} 2=\mathrm{AB}^{\prime} \mathrm{C}, \mathrm{Y} 3=\mathrm{BC}+\mathrm{ABC}^{\prime} .
$$

c) What do you mean by 'Lambda Rule' \& 'Micron Rule’? Draw the Layout \& Schematic diagram of a static CMOS NAND/NOR gate \& identify the corresponding components in the two drawing.
8. a) Design AND/NAND, XOR/XNOR gates using Pass Transistor Logic.
b) Describe the Logic'0' and logic ' 1 ' transfer mechanism of a Pass Transistor.
c) Design a CMOS Master Slave D flip-flop and describe its operation.
$4+6+5$
9. a) Describe the Fick's law for Diffusion process. What do you mean by Isotropic \& Anisotropic Etching processes?
b) Describe the Photolithographic process for MOSFET fabrication.
c) Describe the CMOS fabrication process with proper diagram.
10. a) What do you mean by Series-Parallel switched capacitor circuit? Describe briefly.
b) Describe the different types of Switched Capacitor Integrtor Circuit. Describe the drawbacks of discrete-time integrator. How do you solve this drawback?
c) Design the first and second order switched capacitor lowpass filters.
11. Write short notes on any three of the following:
a) Domino logic
b) Design of $M \times N$ bit SRAM
c) Switch capacitor
d) CPLD
e) CMOS NORA logic.

