CS/B.TECH/(ECE-New)/SEM-7/EC-702/2013-14

2013

MICROELECTRONICS & VLSI DESIGN

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP – A

(Multiple Choice Type Question)

- 1. Choose the correct alternatives for any *ten* of the following: $10 \ge 10 \ge 10$
 - i) Noise margin for low voltage is defined as
 - a) $NM_L = V_{IL} V_{OL}$ b) $NM_L = V_{IL} V_{IH}$
 - c) $NM_L = V_{OH} V_{OL}$ d) $NM_L = V_{IH} V_{IL}$
 - ii) In the VTC curve of an inverter, critical voltages are obtained where the shape of the curve $(d V_{out}/d V_{in})$ is
 - a) 1 b) -1
 - c) 0 d) none of these.

iii) Slant in $(I_D - V_{DS})$ occurs due to

- a) body effect
- b) velocity saturation
- c) channel length modulation
- d) mobility degradation
- iv) The unit of $\mu_n C_{OX}$ is
 - a) A/V^2 b) V^{-1}
 - c) ohm d) $(ohm)^{-1}$

v)	The	The model parameter LAMDA in MOS structure stands for					
	a)	flicker noise					
	b)	transit time					
	c)	channel length modulation					
	d)	d) transconductance					
vi)		or an n-channel MOSFET $I_{D(SAT)} = 0.2 mA$, $V_{DS} = 5V$ and $h = 0.6V$, the Gate voltage is					
	a)	4.8V	b)	5.6V			
	c)	4.4V	d)	5V.			
vii)	The equivalent (W/L) of two nMOS transistors with (W_1/L) and (W_2/L) connected in parallel is						
	a)	$(W_1/L)+(W_2/L)$	b)	$(W_1/L) \times (W_2/L)$			
	c)	$(W_1/L)/(W_2/L)$	d)	none of these.			
viii)	How	How many transistors are required to design function					
	F = (A.B+C.D)?						
	a)	4	b)	6			
	c)	8	d)	10.			
ix)	The main advantage of precharge-evaluate dynamic logic						
	a) lesser number of transistor requiredb) high speedc) low power consumption						
	d)	all of these.					
x)	Which design is more efficient? a) Pull-up & pull-down design						
	b)	b) TG design					
	c) Pre-charge & Evaluate logic						

xi) Dynamic logic requires periodic clock signals in order to

- a) improve performance
- b) synchronization
- c) increasing
- d) charge refreshing.
- xii) The threshold voltage of an enhancement transistor is

a)	greater than 0 V	b)	less than 0 V
uj	Siculor than o v	~)	1000 than 0 V

c) equal to 0 V d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any	three of the following.	3 x 5 = 15
------------	-------------------------	------------

- 2. Describe photolithography process.
- What is the problem of realizing a large value resistor by a MOSFET structure? How can a switched capacitor be used to overcome this problem?
 2+3
- 4. What are the advantages of TG logic design style? Explain with neat sketch the construction and operation of an XOR gate using TG design style. 1+4
- 5. How can resistance of a current source/sink be improved?
- 6. Explain the operation of clocked CMOS S-R latch circuit.

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \ge 15 = 45$

- 7. a) Classify the different types of ASIC design.
 - b) Design the following circuit using PAL, PLA and PROM:

Y1 = AB+A'C+ABC', Y2 = AB'C, Y3 = BC+ABC'.

- c) What do you mean by 'Lambda Rule' & 'Micron Rule'? Draw the Layout & Schematic diagram of a static CMOS NAND/NOR gate & identify the corresponding components in the two drawing.
 3+6+6
- 8. a) Design AND/NAND, XOR/XNOR gates using Pass Transistor Logic.
 - b) Describe the Logic'0' and logic '1' transfer mechanism of a Pass Transistor.
 - c) Design a CMOS Master Slave D flip-flop and describe its operation. 4+6+5
- 9. a) Describe the Fick's law for Diffusion process. What do you mean by Isotropic & Anisotropic Etching processes?
 - b) Describe the Photolithographic process for MOSFET fabrication.
 - c) Describe the CMOS fabrication process with proper diagram. 5+4+6
- 10. a) What do you mean by Series-Parallel switched capacitor circuit? Describe briefly.
 - b) Describe the different types of Switched Capacitor Integrtor Circuit. Describe the drawbacks of discrete-time integrator. How do you solve this drawback?
 - c) Design the first and second order switched capacitor low-pass filters.
- 11. Write short notes on any *three* of the following: 3 x 5
 - a) Domino logic
 - b) Design of M×N bit SRAM
 - c) Switch capacitor
 - d) CPLD
 - e) CMOS NORA logic.

============