# CS/B.TECH/EE(N)/EEE(N)/ICE(N)/SEM-3/EC(EE)-302/2013-14 

2013

## DIGITAL ELECTRONIC CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

## GROUP - A

(Multiple Choice Type Question)

1. Choose the correct alternatives for any ten of the following:
$10 \times 1=10$
i) Which code is used in K-map?
a) Gray
b) $\quad \mathrm{BCD}$
c) Binary
d) Hamming.
ii) Gray code of a number is 10110 . What is its decimal number?
a) 10
b) 15
c) $\quad 27$
d) None of these.
iii) What is Excess-3 Code of 27?
a) 01011001
b) 00100100
c) 01011010
d) None of these.
iv) How many flip-flops are required to design Mod-10 Counter?
a) 3
b) 4
c) 5
d) 6 .
v) $\quad(15)_{10}-(10)_{10}$ is equal to (Using 1 's complement)
a) 0101
b) 1010
c) 1110
d) 0010 .
vi) If you want to convert a J-K FF to a D-FF then which gate is to be connected between $J \& K$ terminals of the $J-K$ FF?
a) AND
b) $\quad \mathrm{OR}$
c) NOT
d) EX-OR.
vii) If an asynchronous counter have three flip-flops with identical, tdp $=50 \mathrm{~ns}$, then what is the total propagation delay and the maximum frequency?
a) $\quad 150 \mathrm{~ns} \& 6.67 \mathrm{MHz}$.
b) $\quad 160 \mathrm{~ns} \& 5.67 \mathrm{MHz}$
c) $\quad 140 \mathrm{~ns} \& 2.23 \mathrm{MHz}$
d) None of these.
viii) BCD coding of 12 is
a) 00001010
b) 00001100
c) 00010010
d) none of these
ix) The result of the BCD addition of $00000111 \& 00000011$ is
a) 00001010
b) 00010000
c) 01000001
d) none of these.
x) A ring counter consists of 5 flip-flops will have
a) 5 states
b) 10 states
c) 32 states
d) none of these.
xi) The equation $\sqrt{213}=13$ is valid for which one of the number systems with base?
a) Base 8
b) Base 6
c) Base 5
d) Base 4 .
xii) The octal equivalent of $(5 E A)_{16}$ is
a) 6543
b) 2752
c) 5722
d) 3453 .

## GROUP - B

## (Short Answer Type Questions)

Answer any three of the following.
2. Given the logical expression $U=(A+B C)(B+\bar{C} A)$, Design the circuit using NAND gates.
3. What is race around condition? How can we overcome the race around condition?
4. Find the characteristic equation of a JK flip-flop.
5. Draw and explain the circuit of $8 \times 1$ MUX using two $4 \times 1$ MUX and one $2 \times 1$ MUX.
6. Implement the following Boolean expression using decoder:
$F(A, B, C, D)=\prod_{m}(1,2,5,7,8,10,12,13)$

## GROUP - C

## (Long Answer Type Questions)

$$
\text { Answer any three of the following. } 3 \times 15=45
$$

7. a) What is lock out state?
b) Write a short note on Ring Counter.
c) Design Mod-6 synchronous counter using JK flip-flops and other gates. $2+5+8$
8. Write short notes on any three of the following: $3 \times 5$
a) Johnson Counter
b) Propagation Delay
c) Parallel In Serial Out (PISO)
d) Even Parity Generator \& Checker
e) Two-bit Comparator.
9. a) Design a Full Adder circuit using 3:8 Decoder.
b) What is priority encoder? Write the truth table of 4-input priority encoder.
c) Implement the following function using $8 \times 1 \mathrm{MUX}$ :

$$
F(A, B, C, D, E)=\sum_{m}(0,1,3,4,8,9,15)+\sum_{d}(5,10,13)
$$

$$
3+(2+3)+7
$$

10. a) Find the minimal sum of product for the Boolean expression:
$f=\sum_{m}(1,3,4,5,9,10,11)+\sum_{d}(6,8)$ using K-map.
b) Write a short note on Dual slope A/D converter.
11. a) What are the types of PLD?
b) Design a code converter circuit or BCD to Excess-3 using ROM.
c) Design a circuit which finds the square of a three-bit number using ROM.
