CS/B.TECH(NEW)(CSE/IT)/SEM-4/M-401/2012

2012

MATHEMATICS-III

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Question)

1. Choose the correct alternatives for the following: $10 \times 1 = 10$

i)	If $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$ and $P(A \cup B) = \frac{1}{2}$, then $P(B A)$ is					
	a)	$\frac{3}{4}$	b)	$\frac{4}{3}$		
	c)	$\frac{1}{4}$	d)	$\frac{1}{3}$		

ii) The variance of a random variable x is

- a) $\{E(x)\}^2$ b) $E(x^2)$ c) $E(x^2) - \{E(x)\}^2$ d) $E(x^2) - E(x)$.
- iii) A statistic t is said to be an unbiased estimator of a population parameter 0 when
 - a) $E(t) = \theta$ b) $E(t^2) = \theta$

c)
$$E(t^2) = \{E(\theta)\}^2$$
 d) $\{E(t)\}^2 = E(\theta^2)$.

iv) The maximum likelihood estimate is a solution of the equation

a)
$$\frac{\partial <(\theta)}{\partial \theta} = 0$$
 b) $\frac{\partial <(\theta)}{\partial \theta} = \text{constant}$
c) $\frac{\partial <(\theta)}{\partial \theta} = \theta$ d) none of these.

- v) If H_1 ($\mu > 60$) is an alternative hypothesis, then the null hypothesis is
 - a) $H_0 (\mu < 60)$ b) $H_0 (\mu \ge 60)$ c) $H_0 (\mu \le 60)$ d) none of these.
- vi) A random variable x has the following p.d.f:

 $f(x) = \begin{cases} k, -2 < x < 2\\ 0, \text{ otherwise} \end{cases}$

Then the value of k is

a)	$\frac{1}{12}$	b)	<u>1</u> 2
c)	$\frac{1}{4}$	d)	1 8

vii) A complete graph is called Kuratowski's first graph if it has

a)	5 vertices	b)	4 vertices

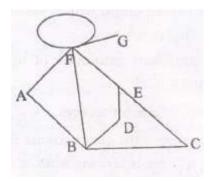
- c) 6 vertices d) 7 vertices.
- viii) If G is a non-planar graph then the possible number of vertices of G is
 - a) 2 b) 3
 - c) 4 d) 6

- ix) The chromatic number of a graph containing an odd circuit is
 - a) 3
 - b) 2
 - c) greater than or equal to 3d)

x) The generators of the cyclic group (Z, +) are

- a) 1, -1 b) 0, 1
- c) 0, -1 d) 2, -2

xi) The inverse of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ is


- a) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ d) none of these.
- xii) If R is a ring without zero divisors, then $x \cdot y = 0$ implies
 - a) x = 0 or y = 0 b) x = 0 and y = 0
 - c) $x = 0, y \neq 0$ d) $x \neq 0, y = 0$.
- xiii) Which of the following sets is closed under multiplication?
 - a) $\{1, -1, 0, 2\}$ b) $\{1, i\}$
 - c) $\{1, \omega, \omega^2\}$ d) $\{\omega, 1\}$.
- xiv) A group G is commutative iff
 - a) ab = ba b) $(ab)^{-1} = b^{-1}a^{-1}$
 - c) $(ab)^{-1} = a^{-1}b^{-1}$ d) $(ab)^2 = ab$.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. If $P(A \cap B) = P(A)P(B)$, then prove that $P(A^{C} \cap B^{C}) = P(A^{C})P(B^{C})$
- 3. Find the mean and variance of Poisson distribution with parameter λ .
- 4. If G is a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$; show that the group G is Abelian.
- 5. A normal population has a mean 0.1 and standard deviation 2.1. Find the probability that the mean of a sample of size 900 will be negative. Given that P(|z| = 1.43) = 0.847.
- 6. Draw the dual of the following graph:

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) A regular graph G determines 8 regions, degree of each vertex being 3. Find the number of vertices of G.
 - b) Prove that the chromatic polynomial of a tree with n vertices is $x(x-1)^{n-1}$, whose *x* is the no. of colours.
 - c) Prove that every finite integral domain is a field.

- 8. a) Prove that a subgroup H of a group G is said to be normal if aH = Ha for all $a \in G$.
 - b) A box contains 5 red balls and 10 white balls. Two balls are drawn at random from the box without replacement. What is the probability that
 - i) the second ball is white,
 - ii) the first ball drawn is red, given the second ball drawn is white?
 - c) Define a cyclic group. Prove that every cyclic group is abelian.
- 9. a) Show that every planar graph is 6 colourable.
 - b) If G be a connected graph with *n* vertices, *e* edges and *r* faces, prove that n e + r = 2.
 - c) If *T* is an unbiased estimator of θ , show that \sqrt{T} is biased estimate of $\sqrt{\theta}$.
- 10. a) State and prove Baye's theorem.
 - b) A random sample with observations 65, 71, 64, 71, 70, 69, 64, 63, 67, 68 is drawn from a normal population with variance 7.056. Test the hypotheses that the population mean is 69 at 1% level of significance. [Given that P(0 < z < 2.58) = 0.495].
 - c) If a population has normal distribution with parameter μ and σ , then prove that the statistic $\frac{1}{n}\sum_{i=1}^{n}(x_i \mu)^2$ is maximum likelihood estimate of σ^2 where μ is known.
- 11. a) Show that the group $(Z_g, +)$ is a homomorphic image of the group (Z, +).

- b) In a bolt factory, machines *A*, *B*, *C* manufacture respectively 25%, 35%, 40%. Of the total of their output 5%, 4%, 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probability that it was manufactured by machines *A*, *B* and *C*?
- c) The lifetime of a certain brand of an electric bulb may be considered as a random variable with mean 1200h and s.d. 250h. Find the probability, using Central Limit theorem, that the average lifetime of 60 bulbs exceeds 1250h.
- 12. a) Prove that the set of all even integers form a commutative ring.
 - b) Prove that intersection of two subrings is a subring.
 - c) Prove that the sample mean \bar{x} is an unbiased estimator of the population mean.

===========