CS/B.TECH(EE/EEE/EIE/ICE-New)/SEM-4 /PH(EE)-401/2012

2012

PHYSICS-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

1.

Candidates are required to give their answers in their own words					
		as far as practi	cable.		
	GROUP – A				
		(Multiple Choice Ty	pe Qı	iestion)	
Choose the correct alternatives for any ten of the following: $10 \times 1 = 1$				en of the following: $10 \times 1 = 10$	
i)	He ³ a	and muon are			
	a)	fermions			
	b)	bosons			
	c)	fermions and bosons r	espect	ively	
	d)	bosons & fermions res	pective	ely.	
ii)	The degrees of freedom for a system of N particles with K constraint relations is given by				
	a)	N-K	b)	N-3K	
	c)	3N-K	d)	3K-N.	
iii) The coordination number for FCC structure is				structure is	
	a)	6	b)	8	
	c)	12	d)	5	
iv) The dielectric constant for a conductor is			ctor is		
	a)	0	b)	1	
	c)	-1	d)	infinity	

v)	Fermi-Dirac distribution approaches Maxwell-Boltzmann distribution at			s Maxwell-Boltzmann	
a) low temperature & high density				ty	
	b) high temperature & low density				
	c) low temperature & low density				
	d) high temperature & high density				
vi)	poten	is the energy of the ground state of a one-dimensional ential box of length l and E_2 be the energy of the ground e when the length of the box is halved, then			
	a)	$E_2 = 2E_1$		$E_2 = E_1$	
	c)	$E_2 = 4E_1$	d)	$E_2 = 3E_1$	
vii)	The reciprocal lattice of a body centered cubic (<i>bcc</i>) lattice is				
	a)	bcc	b) d)	fcc	
	c)	sc	d)	hcp	
viii)		The wave function of a practice is $\psi = A \cos^2 x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Then, the value of A is			
	a)	$\sqrt{\frac{8}{3\pi}}$	b)	$\sqrt{\frac{3}{8\pi}}$	
	c)	$\sqrt{\frac{1}{2\pi}}$	d)	$\sqrt{\frac{3}{2\pi}}$	
ix)	The density of free electron states in a metal varies with energy E as			a metal varies with	
	a)	\sqrt{E}	b)	E^2	
	c)	E^0	d)	$\frac{1}{E}$	

x)	Curie-Weiss law is obeyed by					
	a)	paramagnetic materials				
	b)	anti-ferromagnetic mate	rials			
	c)	ferromagnetic material a	above 1	the Curie temperature		
	d)	ferromagnetic materials	below	the Curie temperature.		
xi)	The M	Iiller indices of a plane p	arallel	to XY plane is		
	a)	(100)	b)	(010)		
	c)	(001)	d)	(110)		
xii) If σ and k be the electrical and thermal conductivities solid, then according to Widemann-Franz law.						
	a)	$\frac{\sigma}{kT}$ = const.	b)	$\frac{k\sigma}{T}$ = const.		
	c)	$\frac{k}{\sigma T} = \text{const.}$	d)	$\sigma kT = \text{const.}$		
	(Whe	ere T is the temperature)				
xiii)	xiii) The product generalized (Q_1) and generalized displacem ($\delta \; q_j$)must have the dimension of			neralized displacement		
	a)	force	b)	work		
	c)	power	d)	length.		
xiv)	v) The spacing between the <i>n</i> th energy state and next energy state in a one-dimensional potential box increase by					
	a)	2n-1	b)	2n+1		
	c)	n-1	d)	n+1		
xv)	In an	n-type semiconductor, d	onor 1	evel		
	a)	is nearer to conduction	band			
	b)	is at the middle between	valen	ce and conduction		
	c)	is nearer to valence band				
	d)	is not formed at all.				

GROUP - B

(Short Answer Type Questions)

 $3 \times 5 = 15$

2+3

Answer any *three* of the following.

2.	a)	Describe briefly micro-state and macro-state with suitable examples.	
	b)	Show that the average energy of electrons at T=0 K is given	
		by $\frac{3}{5} E_F$ (where E_F is the Fermi energy). $2+3$	}
3.	a)	What do you mean by cyclic coordination? Explain with an example.	
	b)	Show that if a given coordination is cyclic in Lagrangian, it will also be cyclic in Hamiltonian. 2+3	}
4.	a)	Define atomic polarizability. Establish a relation between polarization and atomic polarizability.	
	b)	Calculate the induced dipole moment per unit volume of the He gas if it is placed in an electric field of 6000 V cm ⁻¹ . The atomic polarizability of He is 0.18×10^{-40} Fm ² and density of He is 2.6×10^{25} atoms per m ³ .	
5.	a)	Derive Curie's law of paramagnetism in the framework of Langevin's theory.	
	b)	Are all orientations of the magnetic dipoles possible in quantum theory? Explain. 4+1	L
6.	a)	Explain what you mean by degeneracy of an eigenstate with an example.	1
	b)	The eigenvalue equation for the momentum operator is $\left(\frac{\hbar}{t}\right)\left(\frac{\partial\psi}{\partial x}\right) = \lambda\psi$.	
		Solve the above equation and hence show that for ψ to be a physically admissible eigenstate, the eigenvalue λ must be real.	
7.	Derive the Bragg's law of X-ray diffraction from Laue equation and deduce the vector form of Bragg's law of X-ray diffraction in		

reciprocal space.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following.

 $3 \times 15 = 45$

8.	a)	A fre	A free particle of mass m is confined within $x = 0$ and $x = L$.			
		(i)	Write down Schödinger time-dependent equation for such a system.			
		(ii)	Solve the equation to find out the normalized eigenfunctions.			
		(iii)	Show that the eigenfunctions corresponding to two different eigenvalues are orthogonal. 1+4+3			
	b)	If \hat{P} and \hat{L} be the momentum and angular operators, find the values $[\widehat{L_x}, \hat{x}]$ and $[\widehat{L_x}, \hat{y}]$.				
	c)	Find the expectation value of x for the wave function given by $\psi(x) = Ae^{-bx^2}$.				
9.	a)	The energy wave vector dispersion relation or a one- dimensional crystal of lattice constant α is given by $E(k) = E_0 - \alpha - 2\beta \cos(k\alpha)$, where E_0 , α , β are constants.				
		i)	Find the value of k at which the value of an electron is maximum.			
		ii)	Find the difference between the top and the bottom of the energy band.			
		iii)	Obtain the effective mass m^* of the electron at the bottom and at the top of the band. $2+2+2$			
	b)		It do you mean by density of states? Show that the sity of states of free electrons vary with energy E as \sqrt{E} . 1+4			
	c)		odium metals, the free electron density is 2.5×10^{28} m ⁻³ . ulate the Fermi energy and the fermi temperature. $2+2$			

Define Hamiltonian of a dynamical system. When does it

represent the total energy of the system? Explain.

10.

a)

	b)	The Lagrangian of a particle of mass m in one dimension given by	ı is
		$L = \frac{1}{2} m(\dot{\mathbf{x}}^2 - \omega^2 x^2) e^{bt}$	
		Obtain the canonical momentum and equation of motion the Hamiltonian constant of motion?	n. Is 3+3
	c)	Deduce D'Alembert's principle from the principle of virtuwork.	ıal 4
11.	a)	What do you mean by symmetric and anti-symmetric was function? How does Fermi-Dirac(FD) statistics differ from Bose-Einstein(BE) statistics?	
	b)	Explain graphically the Fermi distribution at zero and n zero temperature.	on- 3
	c)	Derive Planck's radiation law from BE statistics. State clearly the assumptions made in the theory.	3+2
	d)	Compute the specific heat of a free electron gas using classical statistics. Using FD statistics, argue that the specific heat of electrons should vary linearly with	
		temperature(T).	2+3
11.	a)	What is Larmor frequency?	2
	b)	With the help of Weiss molecular field theory of ferromagnetism, derive the Curie-Weiss law.	5
	c)	Draw the B-H curve for a ferromagnetic material and identify the retentivity and the coercive field on the curv What is the energy loss per cycle?	re. 3+1
	d)	Explain the reason behind the negative susceptibility of diagrammatic material.	2
	e)	Calculate the Bohr magneton for Gd $^{+3}$. The electronic configuration for Gd $^{+3}$ is $4f^2$ $5s^2$ $5p^6$.	2

=========