CS/B.TECH(EE-New)/SEM-4/ME(EE)-411/2012

2012

THERMAL POWER ENGINEERING

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP – A

(Multiple Choice Type Question)

- 1. Choose the correct alternatives for the following: $10 \ge 10 \ge 10$
 - i) A cycle consisting of two constant volume and two isothermal processes is known as
 - a) Carnot cycle b) Joule cycle
 - c) Otto cycle d) Stirling cycle.
 - ii) In SI engine, high voltage for spark plug is developed using
 - a) battery b) distributer
 - c) ignition coil d) carburetor
 - iii) Cetane number of the fuel commercially for diesel engines in India is in the range
 - a) 40 to 45 b) 60 to 70
 - c) 60 to 80 d) 80 to 90
 - iv) The pressure at the upstream side of a stage of moving blades in a reaction turbine is
 - a) higher than that at the downstream
 - b) lower than that at the downstream
 - c) equal to that at the downstream
 - d) higher or lower, depending upon the turbine load

- v) Regenerator in a gas turbine plant is used for
 - a) improving specific work output
 - b) improving thermal efficiency
 - c) improving work ratio
 - d) none of these.
- vi) The main function of drum in steam generator with single drum is to
 - a) store water in the drum
 - b) remove salts from the water in the drum
 - c) separate steam from water in the drum
 - d) store steam in the drum.
- vii) The commonly used method of governing in steam turbines is by
 - a) throttle governing
 - b) nozzle control governing
 - c) bypass governing
 - d) hydraulic governing
- viii) When M=1 occurs at throat, the flow is called
 - a) choked flow b) steady flow
 - c) stagnation flow d) none of these.
- ix) The ratio of work done per cycle to the swept volume in case of IC engine is called
 - a) compression index
 - b) compression ratio
 - c) mean effective pressure
 - d) volumetric efficiency

- x) The relation between stage efficiency (η_s) , blade efficiency (η_b) and nozzle efficiency (η_n) of a impulse turbine is
 - a) $\eta_s = \frac{\eta_b}{\eta_n}$ b) $\eta_s = \eta_b \times \eta_n$ c) $\eta_n = \eta_s \times \eta_b$ d) $\eta_b = \frac{\eta_s}{\eta_b}$

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \ge 5 = 15$

2. Prove that for a given temperature limit (Max. temperature T_3 and Min. temperature T_1), the expression of maximum net work output $(W_{net})_{max}$ for a closed gas turbine plant is

$$(W_{net})_{max} = C_P(\sqrt{T_3} - \sqrt{T_1})^2.$$

- 3. What are the differences between a closed cycle and an open cycle gas turbine plants?
- 4. What is DNB? Why and how is it avoided in a water tube boiler?
- 5. Steam is supplied to 10 MW turbo-alternator 40 bar and 400°C. Auxiliaries consumes 7% of the output. The condense pressure is 0.05 bar and condensate is sub cooled to 30°C. Assuming that the boiler efficiency is 85% and relative efficiency of turbine as 80% and the mechanical efficiency of the alternator 95%, determine
 - a) the steam consumption per hour
 - b) the overall efficiency of the plant
 - c) the quality of the steam at the exit from the turbine.
- 6. Define the efficiency of a steam generator. What are the major losses in a bipolar? 2+3

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \ge 15 = 45$

 A gas turbine power plant consists at a two stage compressor with intercooling and a single stage turbine with a regenerator. Air enters the compressor at 1 bar, 20°C. The maximum temperature of the cycle is limited to 900°C and the maximum pr. Ratio is 6. The effectiveness of the regenerator is 0.7. The rate of air flow through the plant is 210 kg/s and the calorific value of fuel used is 40.8 MJ/kg. The isentropic efficiency of both the compressors is 0.82, the isentropic efficiency of the turbine is 0.92, the combustion efficiency is 0.85. Take for air C_P =1.005kJ/kg-K and γ =1.33. Assuming perfect intercooling and neglecting pressure and heat losses, estimate

- i) the air-fuel ratio
- ii) the cycle efficiency
- iii) the power supplied by the plant
- iv) the sp. fuel consumption at the plant and the fuel consumption per hour.
- 8. a) With a separating and throttling calorimeter, the following observations were made:

Amount of water separates in the separating calorimeter = 2 kg.

Condensate collected from throttling calorimeter = 20.5 kg

Temperature of steam after throttling = 110°C

Initial pressure of steam after throttling = 11 bar (gauge)

Final pressure of steam after throttling = 28 mm Hg.

Barometer reading of the locality = 760 mm Hg.

Estimate the dryness of steam sampled.

5

5

- b) A turbine is supplied with steam at a pressure of 32 bar and a temperature of 410°C. The steam then expands isentropically to a pressure of 0.08 bar. Find the dryness fraction at the end of expansion and thermal efficiency of the cycle. Neglect pump work and any pressure drop and heat loss.
- c) If the steam is reheated at 5.5 bar to a temperature of 400°C and then expanded isentropically to a pressure of 0.08 bar, what will be the dryness fraction and thermal efficiency of the cycle? 5

- 9. A furnace wall riser, 18 m long, 76.2 mm outer diameter having 6.1 mm thick wall receives saturated water at 80 bar and 1.5 m/s velocity. Assuming a circulation ratio of 12.5 and a slip of 1.2, determine
 - a) the pressure head developed in the riser
 - b) the void fraction at the riser exit
 - c) the heat transfer rate per unit projected area of the riser tube.
- 10. a) What is super-charging? What are the effects of super charging in IC engine?
 - b) An air standard dual cycle has a compression ratio of 16 and the compression begins at 1 bar, 50°C. The max pressure is 70 bar. The heat transferred to air at constant pressure is equal to heat supplied at constant volume. Estimate
 - i) the pressure and temperature at the cardinal points of the cycle

5

5

5

- ii) the cycle efficiency
- iii) the m.e.p. of the cycle.

Given $C_v = 0.718 \text{ kJ/kg-K}, C_v = 0.718 \text{ kJ/kg-K}.$ 10

11. a) Derive the expression of efficiency of an Otto cycle along with the p - v and T - s diagram.

b) Sketch and describe the working principle of a carburetor.

- c) Draw the valve timing diagram of a 4-stroke petrol engine and describe the major events. 5
- d) What are the common combustion-generated pollutants from a diesel engine? 2

==================