2013

MATHEMATICS-III

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

1. Answer any ten from the following: $10 \times 2=20$
i) If $f(x)=x \sin x,-\pi \leq x \leq \pi$ be presented in Fourier series as $a_{0} / 2+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, then find the value of a_{0}.
ii) Show that every function can be expressed as a sum of even and odd functions.
iii) If $f(x)$ is an odd function, then find the Fourier transform of $f(x)$.
iv) If $\mathcal{F}\{f(x)\}=F(s)$, then show that $\mathcal{F}\left\{e^{i a x} f(x)\right\}=F(s+a)$, when \mathcal{F} stands for Fourier transform.
v) Find the value of m such that $3 y-5 x^{2}+m y^{2}$ is a harmonic function.
vi) Determine the poles of the function

$$
f(z)=z^{2} /\left[(z-1)^{2}(z+2)\right]
$$

vii) Find the residue of $\frac{z^{2}}{z^{2}-3^{2}}$ at $z=3 i$.
viii) Evaluate $\oint_{C} \frac{z}{z^{2}-1} d z$ where $C:|z|=2$.
ix) A box contains 6 white and 4 black balls. One ball is drawn at random. What is the probability that the ball drawn is white?
x) If A and B are any two events such that $P(A \cap B)=\frac{1}{2}$, $P\left(A^{c} \cap B^{c}\right)=\frac{1}{3}, P(A)=P(B)=p$, then find the value of p.
xi) If a Poisson variate is such that $P(X=1)=P(X=2)$, then find $P(X=4)$.
xii) Find the singular point of $x(x-1)^{2}(x+2) \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+\left(x^{3}+1\right) y=0$.
xiii) What is Bessel equation? What is Bessel function of first kind? Write down the formula.
xiv) Evaluate $J_{\frac{1}{2}}(x)$.
xv) What is one-dimensional heat equation? Also write down the formula for Wave equation.

GROUP - B

Answer any five questions taking at least one question from each

Module.

$$
5 \times 10=50
$$

Module-I

2. a) Find the Fourier series to represent the function:

$$
\begin{align*}
f(x) & =-x,-2<x \leq 0 \\
& =x, 0 \leq x \leq 2 \tag{5}
\end{align*}
$$

b) Find the Fourier sine and cosine transforms of the function:

$$
\begin{aligned}
f(x) & =1 ; 0 \leq x<a \\
& =0 ; x \leq a
\end{aligned}
$$

$$
2 \frac{1}{2}+2 \frac{1}{2}
$$

3. a) State Parseval's Identity on Fourier. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1 ;|x| \leq a \\ 0 ;|x|>a\end{array}\right.$. Hence using Parseval's Identity find the value of $\int_{0}^{\infty} \frac{\sin ^{2} a x}{x^{2}} d x$.
b) If $\mathcal{F}\{f(x)\}=F(S)$, then show that $\mathcal{F}\{f(a x)\}=\frac{1}{a} \mathrm{~F}\left(\frac{s}{a}\right)$. Use it to find $\mathcal{F}\left\{e^{-\frac{9}{2} x^{2}}\right\}$, given that $\mathcal{F}\left\{e^{-\frac{x^{2}}{2}}\right\}=\sqrt{2 \pi} e^{-\frac{s^{2}}{2}}$, where \mathcal{F} stands for Fourier transform.

Module-II

4. a) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, although the Cauchy-Rieman equations are satisfied at that point.
b) If $f(z)$ is analytic, prove that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2} \tag{5}
\end{equation*}
$$

5. a) State Cauchy Integral formula and use it to evaluate $\int \frac{\operatorname{Cos}(\pi z)}{z^{2}-1} d z$, around a rectangle with vertices $2 \pm i$, $-2 \pm i$.
b) Use residue calculus to evaluate the integral

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{1}{5-4 \sin \theta} d \theta \tag{5}
\end{equation*}
$$

Module-III

6. a) A random variable X has the following probability function:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(x)$	0	K	2 K	2 K	3 K	$\mathrm{~K}^{2}$	$2 \mathrm{~K}^{2}$	$7 \mathrm{~K}^{2}+\mathrm{K}$

Obtain the value of K and estimate $P(X<6)$ and $P(0<X<5)$.
b) In a bolt factory, the machines $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} manufacture respectively $25 \%, 35 \%$ and 40% of the total product. Of their outputs $5 \%, 4 \%$ and 2% respectively are defective bolts. One bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine M_{3} ?
7. a) A car hire firm has two cars, which it hires out day by day. The No. of demands for a car on each day is distributed as a Poisson distribute with mean 1.5. Calculate the proportion of days on which (i) neither car is used, (ii) some demands are refused.
b) The length of the life of tyre manufactured by a company follows a continuous distribution given by the density function

$$
\begin{aligned}
f(x) & =k / x^{3}, 1000 \leq x<1500 \\
& =0, \text { elsewhere }
\end{aligned}
$$

Find k and find the probability that a randomly selected tyre would function for at least 1200 hours.

Module-IV

8. Solve the one-dimensional heat flow equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} ; x \geq 0, t \geq 0
$$

Subject to the conditions:
i) $\quad u=0$, when $x=0, t>0$
ii) $\mathrm{u}=1$, when $0<\mathrm{x}<1, \mathrm{t}=0$

$$
=0, \text { when } \mathrm{x} \geq 1, \mathrm{t}=0
$$

iii) $u(x, t)$ is bounded.
9. a) Prove that $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
b) When n is a positive integer, show that

$$
\begin{equation*}
J_{-n}(x)=(-1)^{n} J_{n}(x) \tag{4}
\end{equation*}
$$

