2013

NUMERICAL METHODS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP – A

(Multiple Choice Type Question)

1. Choose the correct alternatives for any *ten* of the following:

10 x 1 = 10

- i) The ratio of absolute error of the value is
 - a) Relative error b) Absolute error
 - c) Truncation error d) Inherent error.

ii) The significant digit of 0.0001234 is

b)	4
	b)

- c) 8 d) 6.
- iii) The percentage error in approximation of 4/3 to 1.3333 is
 - a) 0.0025% b) 25%
 - c) 0.000025% d) 0.25%
- iv) If the interval of differencing is unity and $f(x) = ax^2$ (*a* is constant), which one of the following choices is wrong?
 - a) $\Delta f(x) = a(2x + 1)$
 - b) $\Delta^2 f(x) = 2a$
 - c) $\Delta^3 f(x) = 2$
 - d) $\Delta^4 f(x) = 0.$

v)		In Simpson's 1/3 rule of finding $\int_a^b f(x)dx$, $f(x)$ is approximated by						
	a)	line segment	b)	parabola				
	c)	circular sector	d)	part of ellipse.				
vi)		nge-Kutta formula has er of	s a trunca	tion error which isof the				
	a)	h^2	b)	h^3				
	c)	h^4	d)	h^5				
vii)	If f	$(x) = \frac{1}{x^2}$, then the definition of x^2	ivided diff	erence $f(a, b)$ is				
	a)	$\frac{a+b}{(ab)^2}$	b)	$\frac{-a-b}{(ab)^2}$				
	c)	$\frac{1}{a^2-b^2}$	d)	$\frac{1}{a^2}-\frac{1}{b^2}.$				
viii)	The	method of Iteration f	ormula $\varphi($	(x) must satisfy				
	a)	$ \phi'(x) < 1$	b)	$ \phi'(x) > 1$				
	c)	$ \phi'(x) = 1$	d)	$ \phi'(x) =2.$				
ix)	Whi	ich of the following me	ethods if a	an iterative method?				
	a)	Gauss-elimination	method					
	b)	Gauss-Seidel meth	od					
	c)	LU-factorization me	ethod					
	d)	Matrix-inversion m	ethod.					
x)	Reg	ula-falsi method is						
	a)	conditionally conve	ergent					

- b) linearly convergent
- c) divergent
- d) none of these.

- xi) Simpson's one-third rule is applicable only when the number of sub-intervals is
 - a) even b) odd
 - c) both even & odd d) none of these.
- xii) In LU-factorization method, the given system equation represented by AX=B is converted to another system LUX=B where U is
 - a) lower triangular matrix
 - b) upper triangular matrix
 - c) identity matrix
 - d) null matrix.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \ge 5 = 15$

- 2. Show that if Δ operates on n, then $\Delta \binom{n}{x+1} = \binom{n}{x}$ and hence $\sum_{n=1}^{N} \binom{n}{x} = \binom{n+1}{x+1} \binom{1}{x+1}$.
- 3. Evaluate $\int_0^1 \cos x \, dx$, taking five equal intervals. Explain the reason behind your choice of integration formula used.
- 4. Apply Lagrange's interpolation formula to find f(x) using following table:

<i>x</i> :	1	2	3	4	7
f(x):	2	4	8	16	128

5. Solve by using Euler's method the following differential equation for x = 1 by taking h = 0.2, $\frac{dy}{dx} = xy$, y = 1 when x = 0. 6. Solve the system of linear equations by Gauss-Jordan method:

2x + y + z = 03x + 2y + 3z = 0x + 4y + 9z = 16

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \ge 15 = 45$

7. a) Compute f(0.23) and f(0.29) using suitable formula from the table given below: 7

<i>x</i> :	0.20	0.22	0.24	0.26	0.28	0.30
f(x):	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

$$x_A = 67.84, \ E_B = 1\%$$
 . 3

8. a) Using Gauss-Seidel method find the solution of the following system of linear equations correct up to two decimal places:

$$3x + y + 5z = 13, 5x - 2y + z = 4, x + 6y - 2z = -1.$$
 7

b) Solve the equation $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1, for y(0.1) and y(0.2), using Runge-Kutta method of the fourth order. 8

b) What is interpolation? Prove that

$$f(x) \simeq y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1(u-2))}{3!} \Delta^3 y_0 + \dots + \frac{u(u-1)\dots(u-n+1)}{n!} \Delta^n y_0.$$

$$1+5$$

- c) Prove that $\nabla^r y_k = \nabla^r y_{k+r}$.
- d) Find the missing term:

<i>x</i> :	1	2	3	4	5	6	7
f(x):	2	4	8	?	32	64	128

10. a)Prove the convergence of Newton-Raphson method. Hence
find the cube root of 10 up to 5 significant figures by
Newton-Raphson mmethod.5+5

- b) Evaluate $\int_0^{0.6} \frac{dx}{\sqrt{1-x^2}}$, using Weddle's rule taking 12 equal sub-intervals. 5
- 11. a) Find the polynomial f(x) and hence calculate f(5.5) for the given data:

<i>x</i> :	0	2	3	5	7
f(x):	1	47	97	251	477

- b) Given $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$, y(1) = 1. Evaluate y(1.2) by modified Euler's method correct up to 4 decimal places.
- c) Solve the following system of equations by L-U decomposition method:

x + y - z = 2, 2x + 3y + 5z = -3, 3x + 2y - 3z = 6.

=================

5

6

5