CS/B.TECH (EIE-New)/SEM-4/EE-402(EI)/2012 2012

FIELD THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP - A

(Multiple Choice Type Question)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

i) Stokes Theorem state that

a)
$$\oint \bar{A} \cdot d\bar{L} = \iint (\bar{\nabla} \times \bar{A}) \cdot d\bar{S}$$

b)
$$\oint \bar{A} \cdot d\bar{L} = \iint (\bar{\nabla} \cdot \bar{A}) \cdot d\bar{S}$$

c)
$$\oint \bar{A} \cdot d\bar{S} = \iint (\overline{\nabla} \cdot \bar{A}) \cdot d\bar{L}$$

d)
$$\oint \bar{A} \cdot d\bar{S} = \iint (\bar{\nabla} \times \bar{A}) \cdot d\bar{L}$$

ii) The magnetic field intensity \overline{H} for an infinite straight current at a distance ρ in cylindrical co-ordinate is

a)
$$\overline{H} = \frac{1}{\rho} \, \overline{a}_{\phi}$$

b)
$$\overline{H} = \frac{1}{2\pi\rho} \, \overline{a}_{\rho}$$

c)
$$\overline{H} = \frac{1}{2\pi\rho} \, \overline{a}_{\phi}$$

d)
$$\bar{H} = \frac{1}{4\pi\rho} \bar{a}_{\phi}$$

iii) Magnetic flux density \bar{B} and magnetic vector potential \bar{A} are related as

a)
$$\bar{B} = \overline{\nabla} \cdot \bar{A}$$

b)
$$\bar{B} = -\nabla \cdot \bar{A}$$

c)
$$\overline{\nabla} \times \overline{B} = \overline{A}$$

$$\bar{B} = \overline{\nabla} \times \bar{A}$$

iv)	Divergence theorem for electrostatic field states that							
,	a)	$\oiint \overline{D} \cdot d\overline{S} = \iiint (\overline{\nabla} \cdot \overline{D}) \ d\overline{V}$						
	b)	$\oiint \overline{D} \cdot d\overline{S} = \iiint (\overline{\nabla} \times \overline{D}) \ d\overline{V}$						
	c)	$\oiint \overline{D} \cdot d\overline{S} = \iiint (\overline{\nabla} \cdot \overline{E}) \ d\overline{V}$						
	d)	$\oiint \bar{E} \cdot d\bar{S} = \iiint (\overline{\nabla} \cdot \overline{D}) \ d\bar{V}$						
v)	Kirchhoff's current law equation is							
	a)	$\overline{\nabla}$. $\overline{B}=0$		$\overline{\nabla} \times \overline{J} = 0$				
	c)	$\overline{\nabla} \times \overline{H} = \overline{J}$	d)	$\overline{\nabla}$. $\overline{J}=0$				
vi)	For a lossless transmission line the characteristic impedance is given by							
	a)	$\sqrt{\frac{c}{L}}$	b)	$2\pi \sqrt{\frac{c}{L}}$ $\sqrt{\frac{L}{c}}$				
	c)	$2\pi\sqrt{\frac{L}{c}}$	d)	$\sqrt{\frac{L}{c}}$				
	The velocity of Electromagnetic wave propagating in free space is							
vii)		•	ic wave	e propagating in free				
vii)		e is	ic wave	e propagating in free $\sqrt{rac{\mu_0}{arepsilon_0}}$				
vii)	space	e is		te propagating in free $\sqrt{\frac{\mu_0}{\varepsilon_0}}$ $\frac{1}{\mu_0\varepsilon_0}$				
vii)	a)	e is $\mu_0 arepsilon_0$	b) d)	$ \sqrt{\frac{\mu_0}{\varepsilon_0}} $ $ \frac{1}{\mu_0\varepsilon_0} $				
	a)	e is $\mu_0 arepsilon_0$ $rac{1}{\sqrt{\mu_0 arepsilon_0}}$	b) d)	$ \sqrt{\frac{\mu_0}{\varepsilon_0}} $ $ \frac{1}{\mu_0\varepsilon_0} $				
	a) c) Displ	e is $\mu_0 \varepsilon_0$ $\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ accement current can flow	b) d) w thro	$\sqrt{\frac{\mu_0}{\varepsilon_0}}$ $\frac{1}{\mu_0\varepsilon_0}$				
	a) c) Displ a) c) The r curre	$\mu_0 arepsilon_0$ $\frac{1}{\sqrt{\mu_0 arepsilon_0}}$ accement current can flow Inductor	b) w throw b) d) nt dense wave	$\sqrt{\frac{\mu_0}{\varepsilon_0}}$ $\frac{1}{\mu_0\varepsilon_0}$ augh Resistor none of these. sity to the displacement				
viii)	a) c) Displ a) c) The r curre	$\mu_0 \varepsilon_0$ $\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ accement current can flow Inductor Capacitor atio of conduction current can the conduction current	b) w throw b) d) nt dense wave	$\sqrt{\frac{\mu_0}{\varepsilon_0}}$ $\frac{1}{\mu_0\varepsilon_0}$ augh Resistor none of these. sity to the displacement				

- x) In a transmission line, electrical energy is transported by
 - a) the flowing electrons
 - b) the flowing electrons and holes
 - c) the associated electric and magnetic fields
 - d) none of these.
- xi) In transverse electromagnetic wave propagation the space difference between \bar{E} and \bar{H} is
 - a) 180°

b) 0°

c) 45°

- d) 90°
- xii) Poynting vector has the unit of
 - a) Watt

- b) Watt/metre³
- c) Watt/metre
- d) Watt/metre²

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Derive an expression for curl of a vector field $(\bar{A}), \bar{\nabla} \times \bar{A}$ in Cartesian co-ordinate system using fundamental definition of curl.
- 3. Using vector Magnetic potential, establish Biot-Savart law.
- 4. Establish that $\nabla \times \overline{H} = \overline{J}$. What is the physical significance of $\nabla \times \overline{H}$?
- 5. Derive the expression for capacitance of a co-axial cable having inner and outer conductor's radii a and b respectively filled by dielectric in the space between the conductors. The length of the cable is L and permittivity is ϵ .
- 6. Prove that the displacement current through the capacitor is equal to conduction current when a capacitor is supplied from a voltage source $v = V_m \sin \omega t$, having a capacitance C. Assume other parameters related to the system.

7.	In a lossless transmission line, the velocity of propagation is 2.5×10^8 m/s. Capacitance of the line is 30 pF/m. Find							
		(i)	inductance of the line					
		(ii)	phase constant at 100 MHz					
		(iii)	characteristics of the line.					
GROUP - C								
(Long Answer Type Questions)								
			Answer any <i>three</i> of the following. $3 \times 15 =$	45				
8.	a)	State	e Gauss Law. Explain the 'Gaussian surface'. 2	+2				
	b)	Find	the divergence of Electric flux density \overline{D} .	3				
	c)	Shov	Show that for electrostatic field $\nabla \times \bar{E} = 0$.					
	d)	Find the potential at a point P (0, 0, 4) m produced by a total charge of 10 nC distributed uniformly along a ring of radius 4m lying in <i>xy</i> plane and centered at the origin. 5						
9.	a)	Esta	blish the relation $\nabla imes ar{E} = rac{\partial ar{B}}{\partial t}$	5				
	b)	Expl	ain the relation $ abla imes \overline{H} = \overline{J} + rac{\partial \overline{D}}{\partial t}$	5				
	c)	of cu	ain the concept of skin depth developing the equation arrent density for an electromagnetic wave travelling ugh good conductor.	n 5				
10.	a)		g Maxwell's equations, derive the wave equations in space involving Electric and Magnetic fields.	5				
	b)	trave	an analytical solution for the electric field wave elling in free space. What is the velocity of the wave in space?	n 5				
	c)	Esta	blish Poynting theorem.	5				
11.	a)	_	ain the importance of propagation constant (γ) ans acteristic impedance (z_o) of a Transmission line.	4				
	b)	tran	e the conditions for lossless and distortionless smission line and also derive the relations for those litions.	4				

- c) What do you mean by linearly polarized plane E.M. wave?
- d) Sketch the T.E.M. wave propagation in lossy medium. 3

4

- 12. Write short notes on any *three* of the following: 3 x 5
 - a) Poisson's and Laplace's Equations for Electro-static field.
 - b) Various kinds of electromagnetic waves in real world.
 - c) Physical significance of Divergence and $\nabla \cdot \overline{B} = 0$.
- d) Boundary relations when magnetic field travels through different medium having permeabilities μ_1 and μ_2 .

========