CS/B.TECH (ECE-New)/SEM-4/EC-402/2012

2012

DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
GROUP - A
(Multiple Choice Type Question)

1. Choose the correct alternatives for any ten of the following:

$$
10 \times 1=10
$$

i) If $\sqrt{61}=7$, the base of the number system is
a) 4
b) 8
c) 6
d) 9
ii) Which family has the better noise margin?
a) ECL
b) DTL
c) MOS
d) TTL
iii) The number of flip-flops required for a MOD-10 ring counter is
a) 4
b) 10
c) 5
d) none o these.
iv) A serial adder requires
a) one half adder
b) two full adders
c) one full adder
d) one multiplexer.
v) The simplification of the Boolean expression $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\bar{C})$ is
a) $A+B$
b) 0
c) AB
d) $\quad 1$.
vi) 2's complement of 1's complement of the number 10110101 is
a) 01001010
b) 01001011
c) 10110101
d) $\quad 10111010$.
vii) Gray code of binary 1101 is
a) 1001
b) 1101
c) 1011
d) $\quad 1111$.
viii) 8421 is a
a) Non-weighted
b) Weighted
c) Complementary code
d) all of these.
ix) Which flip-flop acts as buffer?
a) D flip-flip
b) $\quad \mathrm{T}$ flip-flop
c) J-K flip-flop
d) S-R flip-flop
x) The characteristic equation of T flip-flop is
a) $\quad Q_{n+1}=\bar{T} Q_{n}+T \overline{Q_{n}}$
b) $\quad Q_{n+1}=T Q_{n}+\bar{T} \overline{Q_{n}}$
c) $\quad Q_{n+1}=T \overline{Q_{n}}$
d) $\quad Q_{n+1}=\bar{T} Q_{n}$
xi) $\quad \mathrm{F}=(\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}+A B C)$. Express it as POS.
a) $\quad \mathrm{F}=\Pi(1,2,3)$
b) $\quad \mathrm{F}=\Pi(1,2,3,4,5)$
c) $\quad \mathrm{F}=\Pi(0,5,6)$
d) $\quad F=\Pi(0,6,7)$
xii) Latch is a memory cell of
a) 1 bit
b) 2 bit
c) 3 bit
d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Design 16×8 memory RAM chip using two 16×4 memory RAM chips.
3. Design 5×32 decoder using 3×8 decoder and 2×4 decoder.
4. Perform conversion from D flip-flop to S-R flip-flop.
5. Design a full Subtractor using fewer
(i) NAND gates
(ii) NOR gates.
6. Explain race around condition of J-K flip-flop. Show how this condition can be avoided.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

$$
3 \times 15=45
$$

7. Write the definitions of BCD code and self complementing code with example. What is Gray code? What is ASCII code? Design a Gray code to binary converter using suitable logic gates.

Convert the Gray Code 11011 to equivalent binary code.

$$
4+1+1+8+1
$$

8. What is flip-flop? What is the difference between combinational and sequential circuits? What do you mean by the asynchronous inputs of a flip-flop? What is edge trigger flip-flop and why is it required? Convert S-R flip-flop to J-K R flip-flop.
9. What is ripple counter? Design a presettable 4-Bit asynchronous counter using J-K F-F. A binary ripple counter is required to count up to (16383) ${ }_{10}$. How many F-Fs are required? If the clock frequency is 8.192 MHz , what is the frequency at the output of the MSB?
10. Construct a 5×32 decoder with four 3×8 Decoder and a 2×4 decoder. Show block diagram only. Describe the basic principle of successive approximation method for A/D converter.

Implement the following Boolean equations using PLA device:
a) $\quad \mathrm{F} 1=\sum m(0,5,9,15)$
b) $\quad \mathrm{F} 2=\sum m(1,3,7,11,13)$
11. Write short notes on any three of the following:
a) EPROM
b) BCD to Excess- 3 converter
c) R-2R Ladder type DAC
d) Even Parity Generator and Checker
e) Universal gates
f) Ring Counter.

