CS/BCA/SEM-1/BM-101/2013-14

2013

MATHEMATICS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

GROUP – A

(Multiple Choice Type Question)

- 1. Choose the correct alternatives for any *ten* of the following: $10 \ge 10 \ge 10$
 - i) If $\Delta = abc + 2fgh af^2 bg^2 ch^2$, then the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of straight lines if
 - a) $\Delta > 0$ b) $\Delta < 0$
 - c) $\Delta = 0$ d) none of these.
 - ii) If the matrix $\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ \lambda & -3 & 0 \end{pmatrix}$ is singular then the value of λ is
 - a) 0 b) 4
 - c) 2 d) -1
 - iii) If A be a matrix whose inverse exists then which of the following is not true?
 - a) $(A^T)^{-1} = (A^{-1})^T$ b) $A^{-1} = (\det A)^{-1}$
 - c) $(A^2)^{-1} = (A^{-1})^2$ d) None of these.

iv)	$\frac{\partial}{\partial x}(e)$	$e^{xy}) =$ e^{xy} ye^{xy}			
	a)	e^{xy}	b)	xe ^{xy}	
	c)	<i>ye^{xy}</i>	d)	none of these.	
v)	The degree of the function $f(x, y) = \tan^{-1} \frac{y}{x}$ is				
	a)	1	b)	0	
	c)	2	d)	none of these.	
vi)	The inverse of the matrix $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$ is				
	a)	$\frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}$	b)	$\begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}$	
	c)	$\frac{1}{3}\begin{pmatrix} -1 & 2\\ 1 & 1 \end{pmatrix}$	d)	none of these.	
vii)	The value of $\int \frac{dx}{x \log x}$ is				
	a)	$\log x + c$	b)	$\log \log x + c$	
	c)	$x \log x + c$	d)	none of these.	
viii)	If α , β and γ be the roots of the equation $x^3 + 7x - 2$ then $\sum \alpha^2$				
	a)	0	b)	14	
	c)	-14	d)	4	
ix)	Which of the following is a null set?				
	a)	$A = \{0\}$			
	b)	$A = \{\phi\}$			
	c)	$A = \{x: x \text{ is an integer} \}$	& 1 <x< td=""><td><2}</td></x<>	<2}	

= 0

d) none of these.

The value of $\lim_{x\to 0} \frac{\sin x}{x}$ (where x is radian) is x) a) b) 1 0 d) -1 c) ∞ The conic $\frac{l}{r} = 1 - e \cos \theta$ represents a parabola if xi) a) *e* = 1 b) *e* > 1 d) none of these. c) *e* < 1 What is the value of the following limit? xii) $\lim_{x\to 0} (1+x)^{1/x}$

- a) 1 b) e
- c) o d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Evaluate the integral
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$$
.

3. Express $\begin{bmatrix} -3 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.

4. If
$$u = \tan^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$.

- 5. Solve the equation $x^3 9x^2 + 14x + 24 = 0$ two of whose roots are in the ratio 3:2.
- 6. Prove that the set of real numbers of the form $a + b\sqrt{2}$ where *a* and *b* are rational numbers, forms a field under addition and multiplication.

GROUP – C

(Long Answer Type Questions)

		Answer any <i>three</i> of the following. $3 \times 15 = 45$	5
7.	a)	State Decartes' rule of sign. Using this rule find the nature of the root of the equation $x^4 - 7x^3 + 21x^2 - 9x + 21 = 0.$	5
	b)	Solve the following system of linear equations by Cramer's rule:	5
		x - y + 2z = 1, $x + y + z = 2$, $2x - y + z = 5$.	
	c)	If by a transformation of rectangular axis to another with same origin the expression $ax + by$ changes to $a'x' + b'y'$, prove that $a^2 + b^2 = a'^2 + b'^2$.	:h 5
8.	a)	If G be a group such that $(ab)^2 = a^2b^2 \forall a, b \in G$, show that the group G is Abelion.	5
	b)	Show that $\int_0^1 \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2.$	5
	c)	If $y = e^{-x} \sin x$, then show that $y_4 + 4y = 0$.	5
9.	a)	Show that the matrix $A = \frac{1}{3} \begin{pmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ is orthogonal	
			4
	b)	If $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ then show that $A^2 - 2A + I_2 = O_2$. Hence obtain A^{-1} and also find A^{100} .	
	c)	Reduce the following equation to the canonical form and determine the nature of the conic represented by it: $8x^2 - 12xy + 17y^2 + 16x - 12y + 3 = 0.$	d
10.	a)	Solve the equation $x^3 - 3x^2 + 12x + 16 = 0$ by Cardan's method.	5 6
	b)	Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.	4

- c) If α , β , γ are the three roots of $x^3 + px^2 + qx + r = 0$, obtain the value of $\sum (\alpha - \beta)^2$. 5
- 11. a) State Rolle's theorem. Examine whether Rolle's theorem is applicable or not for the function $f(x) = 1 |x 1|, \forall x \in [0, 2].$
 - b) If $u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$, Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
 - c) Find for what values of x, the following expression is maximum and minimum respectively: $2x^3 - 21x^2 + 36x - 20$ 5+5+5

================