# CS/BCA/SEM-1/BM-101/2013-14 

## 2013

## MATHEMATICS

Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words asfar as practicable.

## GROUP - A

## (Multiple Choice Type Question)

1. Choose the correct alternatives for any ten of the following:

$$
10 \times 1=10
$$

i) If $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}$, then the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of straight lines if
a) $\Delta>0$
b) $\Delta<0$
c) $\Delta=0$
d) none of these.
ii) If the matrix $\left(\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ \lambda & -3 & 0\end{array}\right)$ is singular then the value of $\lambda$ is
a) o
b) 4
c) 2
d) -1
iii) If A be a matrix whose inverse exists then which of the following is not true?
a) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
b) $A^{-1}=(\operatorname{det} A)^{-1}$
c) $\left(A^{2}\right)^{-1}=\left(A^{-1}\right)^{2}$
d) None of these.
iv) $\frac{\partial}{\partial x}\left(e^{x y}\right)=$
a) $e^{x y}$
b) $x e^{x y}$
c) $y e^{x y}$
d) none of these.
v) The degree of the function $f(x, y)=\tan ^{-1} \frac{y}{x}$ is
a) 1
b) o
c) 2
d) none of these.
vi) The inverse of the matrix $\left(\begin{array}{rr}1 & 2 \\ -1 & 1\end{array}\right)$ is
a) $\frac{1}{3}\left(\begin{array}{rr}1 & -2 \\ 1 & 1\end{array}\right)$
b) $\quad\left(\begin{array}{rr}1 & -2 \\ -1 & 1\end{array}\right)$
c) $\frac{1}{3}\left(\begin{array}{rr}-1 & 2 \\ 1 & 1\end{array}\right)$
d) none of these.
vii) The value of $\int \frac{d x}{x \log x}$ is
a) $\quad \log |x|+c$
b) $\quad \log |\log x|+c$
c) $\quad x \log |x|+c$
d) none of these.
viii) If $\alpha, \beta$ and $\gamma$ be the roots of the equation $x^{3}+7 x-2=0$ then $\sum \alpha^{2}$
a) o
b) 14
c) $\quad-14$
d) 4
ix) Which of the following is a null set?
a) $A=\{0\}$
b) $A=\{\phi\}$
c) $\quad A=\{\mathrm{x}: \mathrm{x}$ is an integer \& $1<\mathrm{x}<2\}$
d) none of these.
x) The value of $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin x}{x}$ (where x is radian) is
a) 1
b) o
c) $\quad \infty$
d) -1
xi) The conic $\frac{l}{r}=1-e \cos \theta$ represents a parabola if
a) $e=1$
b) $e>1$
c) $e<1$
d) none of these.
xii) What is the value of the following limit?

$$
\operatorname{Lim}_{x \rightarrow 0}(1+x)^{1 / x}
$$

a) 1
b) $e$
c) o
d) none of these.

## GROUP - B

## (Short Answer Type Questions)

Answer any three of the following.

$$
3 \times 5=15
$$

2. Evaluate the integral $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x$.
3. Express $\left[\begin{array}{rrr}-3 & 4 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 5\end{array}\right]$ as the sum of a symmetric and a skewsymmetric matrix.
4. If $u=\tan ^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{4} \sin 2 u$.
5. Solve the equation $x^{3}-9 x^{2}+14 x+24=0$ two of whose roots are in the ratio 3:2.
6. Prove that the set of real numbers of the form $a+b \sqrt{2}$ where $a$ and $b$ are rational numbers, forms a field under addition and multiplication.

## GROUP - C

## (Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) State Decartes' rule of sign. Using this rule find the nature of the root of the equation
$x^{4}-7 x^{3}+21 x^{2}-9 x+21=0$.
b) Solve the following system of linear equations by Cramer's rule:
$x-y+2 z=1, \quad x+y+z=2, \quad 2 x-y+z=5$.
c) If by a transformation of rectangular axis to another with same origin the expression $a x+b y$ changes to $a^{\prime} x^{\prime}+b^{\prime} y^{\prime}$, prove that $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$.
8. a) If $G$ be a group such that $(a b)^{2}=a^{2} b^{2} \forall a, b \in G$, show that the group G is Abelion.
b) Show that $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x=\frac{\pi}{8} \log 2$.
c) If $y=e^{-x} \sin x$, then show that $y_{4}+4 y=0$.
9. a) Show that the matrix $A=\frac{1}{3}\left(\begin{array}{rrr}-1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$ is orthogonal and hence find $A^{-1}$.
b) If $A=\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$ then show that $A^{2}-2 A+I_{2}=O_{2}$. Hence obtain $A^{-1}$ and also find $A^{100}$.
c) Reduce the following equation to the canonical form and determine the nature of the conic represented by it:

$$
8 x^{2}-12 x y+17 y^{2}+16 x-12 y+3=0 .
$$

10. a) Solve the equation $x^{3}-3 x^{2}+12 x+16=0$ by Cardan's method.
b) Prove that $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
c) If $\alpha, \beta, \gamma$ are the three roots of $x^{3}+p x^{2}+q x+r=0$, obtain the value of $\sum(\alpha-\beta)^{2}$.
11. a) State Rolle's theorem. Examine whether Rolle's theorem is applicable or not for the function $f(x)=1-|x-1|, \forall x \in[0,2]$.
b) If $u=\frac{y}{z}+\frac{z}{x}+\frac{x}{y}$, Prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
c) Find for what values of x , the following expression is maximum and minimum respectively:

$$
2 x^{3}-21 x^{2}+36 x-20 \quad 5+5+5
$$

