## BASIC ELECTRICAL ENGINEERING

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
( Multiple Choice Type Questions )

1. Choose the correct alternatives for any ten of the
following : $\quad 10 \times 1=10$
i) In three-phase induction motor
a) 3-phase supply is to be given to the stator winding and d.c. supply the rotor winding
b) only 3-phase supply is to be given to the stator winding
c) 3-phase supply is to be given to both stator and rotor winding
d) 3-phase supply is to be given to rotor winding.
ii) A $400 \mathrm{~V}, 50 \mathrm{~Hz}$ three-phase induction motor rotates at 1440 rpm on full-load. The motor is wounded for
a) 2 poles b) 4 poles
c) 6 poles d) 8 poles.
iii) The slip of 400 V , 3-phase, 4-pole induction motor when rotating at 1440 rpm is
a) $2 \%$ b) $3 \%$
c) $4 \%$ d) $5 \%$.
iv) A sinusoidal voltage is represented as
$\mathrm{v}=141.4 \sin \left(314.18 \mathrm{t}-\frac{\pi}{2}\right)$. Its $r m s$ value of voltages,
frequency and phase angle are respectively
a) $141 \cdot 42 \mathrm{~V}, 314 \cdot 16 \mathrm{~Hz}, 90^{\circ}$
b) $100 \mathrm{~V}, 100 \mathrm{~Hz},-90^{\circ}$
c) $87.92 \mathrm{~V}, 56 \mathrm{~Hz}, 90^{\circ}$
d) $200 \mathrm{~V}, 50 \mathrm{~Hz},-90^{\circ}$.
v) The direction of current in an a.c. circuit is
a) always in one direction
b) varying from time to time
c) unpredictable
d) from positive to negative.
vi) In a three-phase star connected system, the relation between the phase and the line voltage is
a) $\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{L}}$
b) $V_{p}=\sqrt{3} V_{L}$
c) $\left.V_{p}=V_{L} / \sqrt{3} d\right) V_{p}=V_{L} / 3$
vii) When a pure inductance is connected to an a.c. source, the voltage $\qquad$ the current through it by
$\qquad$
a) lags, $90^{\circ}$ b) leads, $90^{\circ}$
c) lags, $45^{\circ}$ d) leads, $45^{\circ}$.
viii) The power consumed by a pure capacitance connected to a.c. source is
a) zero b) very low
c) high d) infinite.
ix) In a series RL circuit the phase difference between the applied a.c. voltage and current increases when
a) $R$ is increased
b) $X_{L}$ is increased
c) $X_{L}$ is decreased
d) supply frequency is increased.
x) When a phasor is multiplied by $j$ and $-j$, it is rotated through $\qquad$ in the anticlockwise direction
respectively by
a) $90^{\circ}, 270^{\circ}$ b) $90^{\circ}, 90^{\circ}$
c) $\left.90^{\circ}, 180^{\circ} \mathrm{d}\right) 270^{\circ}, 90^{\circ}$.
xi) An a.c. voltage of $(100+j 60) \mathrm{V}$ is applied to a circuit to give a current of $(-4+j 10)$ A. The power dissipated by the current is
a) -100 W b) 100 W
c) 200 W d$) 400 \mathrm{~W}$.
xii) In a parallel a.c. circuit, if the supply frequency is greater than the resonant frequency, then the circuit is
a) inductive b) resistive
c) capacitive d) none of these.
xiii) $Q$ factor of a series circuit consisting $R=10$ ohms,
$L=0 \cdot 1 \mathrm{H}$ and $C=10 \mu \mathrm{~F}$ is
a) 115 b) 100
c) 10 d$) 1$.
xiv) If a parallel circuit is shunted by a resistance then the
a) $Q$ factor is increased
b) impedance is decreased
c) both (a) \& (b)
d) none of these.

> GROUP - B
> ( Short Answer Type Questions )

Answer any three of the following. $3 \times 5=15$
2. A 220 volts separately excited DC machine has an armature resistance of $0.4 \Omega$. If the load current is 20 ampere, find the induced emf when the machine operates
i) as a motor
ii) as a generator.
3. A $415 \mathrm{~V} / 220 \mathrm{~V}$ transformer takes a no-load current of 1 A and operates at a power factor of $0 \cdot 19$ lagging when the
secondary supplies a current of 100 A at $0 \cdot 8$ p.f. lagging.
Find the primary current.
4. A 6-pole, lap connected D.C. generator with 125 coils generates a voltage of 400 volts on open circuit when running at 1200 rpm . Find the useful flux per pole. For the same value of the flux per pole, find the voltage at open circuit when the machine runs at 1000 rpm .
5. Describe the Open Circuit Characteristics ( OCC ) of a D.C. generator.
6. Explain the method of measurement of balanced three phases power by two wattmeter method under different power factor conditions.
7. A 3 -phase, 6 -pole, 50 Hz induction motor has a slip of $1 \%$ at no load and 3\% at full load. Calculate
i) synchronous speed
ii) no load speed
iii) full load speed
iv) frequency of rotor current at standstill
v) frequency rotor current at full load.

> GROUP - C

## (Long Answer Type Questions )

Answer any three of the following. $3 \times 15=45$
8. a) Explain the method of measurement of balanced

3 -phage power by 2 -wattmeter method. Draw the neat circuit diagram. 7
b) Three equal impedances $(6+j 8) \Omega$ are connected in across a 400 V , 3 -phase and 50 Hz supply. Calculate
i) the line current and the phase current
ii) the power factor
iii) active and reactive powers drawn by the load per
phase. 8
9. a) An a.c. series circuit consisting of a pure resistance of $25 \Omega$, inductance of $0 \cdot 15 \mathrm{H}$ and capacitance of $80 \mu \mathrm{~F}$ is supplied from a 230 V, 50 Hz a.c. Find
i) the impedance of the circuit
ii) the current
iii) the power drawn by the circuit
iv) the power factor.
b) Draw the phasor diagram. $10+5$
10. a) Write short notes on the following :
i) Active \& ractive power
ii) Power factor
iii) Apparent power.
b) The equation of an alternating current is
$i=62.35 \sin 323 t \mathrm{~A}$. Determine its
i) maximum value
ii) frequency
iii) $r m s$ value
iv) average value
v) form factor.
11. a) Explain why power loss in a pure inductance / pure capacitance is equal to zero in an a.c. circuit. 5
b) A coil of resistance 2 ohms and inductance 0.01 H is connected in series with a capacitor across 200 V mains. What must be the capacitance for maximum current at 25 Hz ? Find also the current and voltage in the capacitor. 10
12. a) State and prove Thevenin's theorem. 5
b) Find the currents through $\mathrm{R}_{\mathrm{BC}}, \mathrm{R}_{\mathrm{CD}}, \mathrm{R}_{\mathrm{BD}}$ in the
following circuit.

c) Explain with reasons as to why transformer core is made up of silicon steel lamination. 5
13. a) Draw the phasor diagram of single phase transformer for lagging power factor load. 5
b) The open circuit and short circuit test-data of a 5 kVA ,

200/400 volts, 50 Hz , single phase transformers are :
i) O.C. test : primary voltage $=200$ volts, $I=0.75 \mathrm{~A}$,
$\mathrm{W}=75 \mathrm{~W}$
ii) S.C. test : primary voltage $=18$ volts, S.C. current on the secondary side $=12 \cdot 5 \mathrm{~A}, \mathrm{~W}=60 \mathrm{~W}$.

Find the parameters of the equivalent circuits. 5
c) State and explain Faraday's law of electromagnetism. 5
14. a) Give the speed control methods of 3-phase induction motor. 6
b) A 4-pole, 3-phase, $275 \mathrm{~kW}, 440 \mathrm{~V}, 50 \mathrm{~Hz}$, induction motor has a speed of 1460 rpm on full-load. Calculate the slip and speed of the rotating magnetic field. 9
15. Write short notes on the following : $5 \times 3$
a) Eddy current losses
b) Hysteresis loss
c) Dielectric constant ( K )
d) Principle of operation of 3-phase induction motor.
e) Quality factor.

