CS/B.TECH/PWE/SEM-8/PWE-804A/2013

2013

TECHNOLOGY OF MACHINING \& METAL CUTTING

Time Allotted : 3 Hours Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The strength of a single point cutting tool depends upon
a) rake angle b) clearance angle
c) lip angle d) inclination angle.
ii) The composition of commonly used HSS is
a) 18 W 4 Cr 1 V
b) 12 Mo 1 W 4 Cr 1 V
c) 6 Mo 6 W 4 Cr 1 V
d) none of these.
iii) A milling cutter having 8 teeth is rotating at 150 r.p.m.

If the feed per tooth is 0.1 mm the value of the table
speed in $\mathrm{mm} / \mathrm{min}$ is
a) 120 b) 187
c) 125 d$) 70$.
iv) Crater wear on tool always starts at some distance from the tool tip because at that point
a) cutting fluid does not penetrate
b) normal stress on rake surface is maximum
c) temperature is maximum
d) tool strength is minimum.
v) Size of a shaper is given by its
a) stroke length
b) motor power
c) weight of the machine
d) rate size.
vi) In centreless grinding the workpiece centre will be
a) above the line joining the two wheel centres
b) below the line joining the two wheel centres
c) one the line joining the two wheel centres
d) none of these.
vii) A lead screw with half nut in a lathe, free to rotate in both direction has
a) V threads b) Whitworth thread
c) Buttress thread d) Acme thread.
viii) In machining high carbon steels under the same cutting conditions, cutting temperatures would be minimum if the tool insert is made of
a) sintered carbide
b) silver toughed alumina
c) CBN
d) Diamond (PCD).
ix) Merchant's circle diagram is valid for
a) orthogonal cutting b) oblique cutting
c) both of these d) none of these.
x) Cutting tools were essentially provided with clearance
angle
a) for ease of chip flow
b) to reduce cutting forces
c) to avoid rubbing with the finished surfaces
d) to reduce friction at chip-tool interface.
xi) The point angle of a drill is
a) 60 degree b) 90 degree
c) 118 degree d) 235 degree.
xii) CBN wheel are preferably used to grind the products made of
a) grey cast iron b) mild steel
c) wrought iron d) hard steel.

GROUP - B

(Short Answer Type Questions)
Answer any three of the following. $3 \times 5=15$
2. Write the names of the cutting fluids. State their properties and roles in metal cutting.
3. What are the major causes of tool failures ? How do you prevent these failures?
4. a) Find the set over of tail stock in taper turning.
b) Calculate the teeth of change gears to cut 4 T.P.I. on a lathe, with lead screw, having pitch equal to 11 mm ,
5. A drilling machine consumes 0.5 kW of power while machining at speed of $40 \mathrm{~m} / \mathrm{min}$. The torque developed was measured with a dynamometer and comes to be 2 Nm . What is the maximum diameter of the drill under the above conditions. Find also the machining time if the depth of the hole to be cut is 30 mm at a feed of $0.1 \mathrm{~mm} / \mathrm{rev}$.
6. Write a note on any one of the following :
a) Different tool materials and its role
b) Jigs and Fixtures
c) Thread cutting in a lathe.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) Derive the relations between the ORS system and ASA system in tool geometry of a single point cutting tool.

And hence find the side rake, back rake, and maximum rake angle of a single point turning tool with a tool geometry in ORS system as 10-0-5-8-20-90-0 (mm).

$$
5+3
$$

b) Define tool life. A tool life of 100 min is recorded in a machining test while machining at $25 \mathrm{~m} / \mathrm{min}$ and 6 min at $70 \mathrm{~m} / \mathrm{min}$ of mild steel work-piece. Establish the tool life equation, cutting speed for 1 min tool life and also find how many times the tool has to be regrind if it is used to turn a job of length 250 mm at a speed of 500 r.p.m. at a feed of $0.2 \mathrm{~mm} / \mathrm{rev} .1+6$
8. a) Discuss how the tool geometry affects the tool life. 8
b) Determine the cost of machining 10 identical jobs by milling under the given conditions :

Idle time per piece $=10 \mathrm{~min}$, actual machining time per piece $=20 \mathrm{~min}$, Life of each tool $=10 \mathrm{~min}$, time of changing a tool tip $=2 \mathrm{~min}$, man machinne per hour rate $=$ Rs. 60, cost of each new tool tip $=$ Rs. 20.7
9. a) Derive the Earnst and Merchant relation in metal cutting. 7
b) During the machining of steel with 0-10-6-6-8-90-1
(mm) ORS shaped tool the following observations were taken : Feed $=0.5 \mathrm{~mm} /$ rev, depth of cut $=2 \mathrm{~mm}$, cutting speed $=40 \mathrm{~m} / \mathrm{min}$, the shear angle $=20^{\circ}$, the power consumption while machining is 3 kW and while running idle is 0.5 kW . Calculate the cutting force, chip thickness ratio, normal pressure of the chip and velocity of chip flow. 8
10. a) Write the differences between Broaching and grinding.
b) Calculate the total time to mill a slab by peripheral
milling for the given data :
Cutter diameter $=50 \mathrm{~mm}$, Feed $=0.3 \mathrm{~mm} / \mathrm{min}$, deepth of cut $=2 \mathrm{~mm}$, length of the job $=100 \mathrm{~mm}$, over travel $=3 \mathrm{~mm} .3$
c) During peripheral surface grinding operation with a 200 mm 20 mm wheel rotating at $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. with table speed of $2 \mathrm{~m} / \mathrm{min}$ the following observations have been made : Wheel depth of cut $=0.025 \mathrm{~mm}$, Tangential force $=2 \mathrm{~kg}$. Thrust force $=1.5 \mathrm{~kg}$. Calculate the specific energy per unit volume. Given the number of active grits as 300 per sq.cm and width of workpiece $=10 \mathrm{~mm} .7$
11. a) Do the differential indexing for 149 division. 4
b) What is a grear? What are the types of gear ? Write the advantages of involute gear tooth form. Explain any machining process of manufacturing a gear.

$$
1+2+3+5
$$

12. Write short notes on any three of the following: 35
a) Principles of location
b) Differences between Capstan and Turret lathe
c) Comparison between NC and CNC machines
d) Counter boring and counter sinking
e) Thread rolling.
