CS/B.TECH (EEE/ICE/PWE) (OLD)/SEM-4/EC-402/2013

2013

DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) The binary equivalent number of ($25 \cdot 75)_{10}$ is
a) $11001 \cdot 110$ b) $11001 \cdot 011$
c) $11001 \cdot 111$ d) $11001 \cdot 000$.
ii) The hexadecimal equivalent number of $10(348 \cdot 35)$ is
a) $15 \mathrm{C} \cdot 668$ b) $15 \mathrm{C} \cdot 599$
c) $15 \mathrm{~B} \cdot 599 \mathrm{~d}) 15 \mathrm{~A} \cdot 599$.
iii) The decimal equivalent number of $(1101 \cdot 11) 2$ is
a) 13.25 b) 13.75
c) 13.5 d$) 13.00$.
iv) The decimal equivalent number of $(427 \cdot 35) 8$ is
a) 279.456732 b) 279.4567789
c) 279.432167 d) 279.453125 .
v) The decimal equivalent number of ($6 \mathrm{ABC} \cdot 2 \mathrm{~A}$) 16 is
a) $27324 \cdot 125$ b) $27325 \cdot 678$
c) $27324 \cdot 164$ d) $27324 \cdot 654$.
vi) The binary equivalent number of $(155 \cdot 52) 8$ is
a) $001101101 \cdot 101010$ b) $001101101 \cdot 101101$
c) $001101101 \cdot 110000 \mathrm{~d}) 001101101 \cdot 110011$.
vii) The binary equivalent number of (1CEF-2B) 16 is
a) $1110011101111 \cdot 00101011$
b) $1110011101111 \cdot 00111011$
c) $1110011101111 \cdot 1101011$
d) $1110011101111 \cdot 1001001$.
viii) The hexadecimal equivalent number of $(7324 \cdot 456) 8$ is
a) ED4.87 b) ED4.47
c) ED4.57 d) ED4.97.
ix) The result of subtraction of the binary bits
$11101-1101$ is
a) 00001 b) 10000
c) 10001 d$) 10011$.
x) The result of addition of the binary bits $1101+11101$ is
a) 00001 b) 10000
c) 10001 d) 10011 .

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Convert :
a) $A B C+A D$ into standard SOP format.
b) $(A+B+C)(A+D)$ into standard POS format. $2 \times 2^{1 / 2} 2$
3. Design and implement a full-adder circuit using decoder.
4. Describe the operation of successive approximation type

ADC. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type ?
5. Construct :
a) EX-OR using NAND
b) EX-NOR using NOR. Why are NAND and NOR gates called universal gates ?
6. What is 'lock out' in counter ? Explain race around condition
in $J-K$ flip-flop. $2+3$
GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. What is propagation delay? What is noise immunity?

Describe the advantages and disadvantages of totem pole output configuration. How can the logic gates of TTL family and CMOS family be interfaced $? 2+3+5+5$
8. a) Explain the operation of weighted register 4-bit D / A converter. Derive the expression of the output voltage.
b) Implement a $16: 1$ MUX using only $4: 1$ MUX. Write down the proper truth table.
9. a) What is register ? Name different types of registers.

Explain any one in detail.
b) Design a BCD to Excess-3 code converter using PROM.

$$
2+2+5+6
$$

10. a) What is the difference between synchronous and asynchronous counters ?
b) Realize a 4-bit Ring counter using $J K$ flip-flops. Develop
the state table. Can this circuit be used to realize a
frequency divider ? $3+(4+3)+5$
11. Write short notes on any three of the following : 3×5
a) Quine McCluskey method
b) Odd parity generator
c) TTL NAND gates
d) EEROM
e) Carry look ahead adder.
