সমাকলনবিদ্যা (Integral Calculus)

Submitted by arpita pramanik on Thu, 02/17/2011 - 14:07

সমাকলনবিদ্যা

1. [tex]\displaystyle \int du = u + C[/tex]

2. [tex]\displaystyle \int a \, du = a\int du[/tex]

3. [tex]\displaystyle \int (du + dv + ... + dz) = \int du + \int dv + ... + \int dz[/tex]

4. [tex]\displaystyle \int f (x)\,dx = F(x) + C[/tex]

5. [tex]\displaystyle \int_a^b f(x) \, dx = F(b) - F(a)[/tex]

6. [tex]\displaystyle \int_a^b f(x) \, dx = -\int_b^a f(x) \, dx[/tex]

7. [tex]\displaystyle \int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx[/tex]

8. [tex]\displaystyle \int_a^b f(x) \, dx = \int_a^b f(z) \, dz[/tex]

9. [tex]\displaystyle \int u^n \, du = \dfrac{u^{n + 1}}{n + 1} + C; \, n \neq -1[/tex]

10. [tex]\displaystyle \int \dfrac{du}{u} = \ln u + C[/tex]

11. [tex]\displaystyle \int a^u \, du = \dfrac{a^u}{\ln a} + C, \,\, a > 0, \,\, a \neq 1[/tex]

12. [tex]\displaystyle \int e^u \, du = e^u + C[/tex]

13. [tex]\displaystyle \int \sin u \, du = -\cos u + C[/tex]

14. [tex]\displaystyle \int \cos u \, du = \sin u + C[/tex]

15. [tex]\displaystyle \int \sec^2 u \, du = \tan u + C[/tex]

16. [tex]\displaystyle \int \csc^2 u \, du = -\cot u + C[/tex]

17. [tex]\displaystyle \int \sec u \, \tan u \, du = \sec u + C[/tex]

18. [tex]\displaystyle \int \csc u \, \cot u \, du = -\csc u + C[/tex]

19. [tex]\displaystyle \int \tan u \, du = \ln (\sec u) + C = -\ln (\cos u) + C[/tex]

20. [tex]\displaystyle \int \cot u \, du = \ln (\sin u) + C[/tex]

21. [tex]\displaystyle \int \sec u \, du = \ln (\sec u + \tan u) + C[/tex]

22. [tex]\displaystyle \int \csc u \, du = \ln (\csc u - \cot u) + C = -\ln (\csc u + \cot u) + C[/tex]

23. [tex]\displaystyle \int \dfrac{du}{\sqrt{a^2 - u^2}} = \arcsin \, \dfrac{u}{a} + C, \,\,\, a > 0[/tex]

24. [tex]\displaystyle \int \dfrac{du}{a^2 + u^2} = \dfrac{1}{a}\arctan \, \dfrac{u}{a} + C[/tex]

25. [tex]\displaystyle \int \dfrac{du}{u\sqrt{u^2 - a^2}} = \dfrac{1}{a} {\rm arcsec} \, \dfrac{u}{a} + C[/tex]

26. [tex]\displaystyle \int u\,dv = uv - \int v\, du[/tex]

Related Items