Problem 002 | Quadratic Equations

Submitted by Anonymous (not verified) on Sun, 02/17/2013 - 23:42

উদাহরণ ২৷ [tex]\alpha ,\beta [/tex] এবং [tex]\gamma ,\delta [/tex]  যথাক্রমে [tex]{x^2} + px - r = 0[/tex] এবং [tex]{x^2} + px + r = 0[/tex]  সমীকরণের বীজ হলে, প্রমান করো যে,     [tex]\left( {\alpha  - \gamma } \right)\left( {\alpha  - \delta } \right) = \left( {\beta  - \gamma } \right)\left( {\beta  - \delta } \right)[/tex]   .                                [Jt. Ent. ‘83 ]

সমাধান: [tex]\alpha ,\beta [/tex] এবং [tex]\gamma ,\delta [/tex]  যথাক্রমে [tex]{x^2} + px - r = 0[/tex] এবং  [tex]{x^2} + px + r = 0[/tex] সমীকরণের বীজ।

[tex]\begin{array}{l}
{\alpha ^2} + p\alpha  - r = 0 \to \left( 1 \right)\\
{\beta ^2} + p\beta  - r = 0 \to \left( 2 \right)\\
\gamma  + \delta  =  - p \to \left( 3 \right)
\end{array}[/tex]

(1)- (2) করে পাই

[tex]\begin{array}{l}
{\alpha ^2} - {\beta ^2} + p\left( {\alpha  - \beta } \right) = 0\\
 \Rightarrow {\alpha ^2} - {\beta ^2} - \left( {\gamma  + \delta } \right)\left( {\alpha  - \beta } \right) = 0\left[ {\gamma  + \delta  =  - p} \right]\\
 \Rightarrow {\alpha ^2} - {\beta ^2} - \gamma \alpha  + \gamma \beta  - \delta \alpha  + \delta \beta  = 0\\
 \Rightarrow \alpha \left( {\alpha  - \gamma } \right) - \beta \left( {\beta  - \gamma } \right) - \delta \alpha  + \delta \beta  = 0\\
 \Rightarrow \alpha \left( {\alpha  - \gamma } \right) - \beta \left( {\beta  - \gamma } \right) - \delta \alpha  + \delta \beta  + \gamma \delta  - \delta \gamma  = 0\\
 \Rightarrow \alpha \left( {\alpha  - \gamma } \right) - \beta \left( {\beta  - \gamma } \right) - \delta \left( {\alpha  - \gamma } \right) + \delta \left( {\beta  - \gamma } \right) = 0\\
 \Rightarrow \left( {\alpha  - \gamma } \right)\left( {\alpha  - \delta } \right) - \left( {\beta  - \gamma } \right)\left( {\beta  - \delta } \right) = 0\\
 \Rightarrow \left( {\alpha  - \gamma } \right)\left( {\alpha  - \delta } \right) = \left( {\beta  - \gamma } \right)\left( {\beta  - \delta } \right)\left[ {proved} \right]
\end{array}[/tex]

Comments

Related Items